705 research outputs found

    Action in cognition: the case of language

    Get PDF
    Empirical research has shown that the processing of words and sentences is accompanied by activation of the brain's motor system in language users. The degree of precision observed in this activation seems to be contingent upon (1) the meaning of a linguistic construction and (2) the depth with which readers process that construction. In addition, neurological evidence shows a correspondence between a disruption in the neural correlates of overt action and the disruption of semantic processing of language about action. These converging lines of evidence can be taken to support the hypotheses that motor processes (1) are recruited to understand language that focuses on actions and (2) contribute a unique element to conceptual representation. This article explores the role of this motor recruitment in language comprehension. It concludes that extant findings are consistent with the theorized existence of multimodal, embodied representations of the referents of words and the meaning carried by language. Further, an integrative conceptualization of “fault tolerant comprehension” is proposed

    Imagery or meaning? Evidence for a semantic origin of category-specific brain activity in metabolic imaging

    Get PDF
    Category-specific brain activation distinguishing between semantic word types has imposed challenges on theories of semantic representations and processes. However, existing metabolic imaging data are still ambiguous about whether these category-specific activations reflect processes involved in accessing the semantic representation of the stimuli, or secondary processes such as deliberate mental imagery. Further information about the response characteristics of category-specific activation is still required. Our study for the first time investigated the differential impact of word frequency on functional magnetic resonance imaging (fMRI) responses to action-related words and visually related words, respectively. First, we corroborated previous results showing that action-relatedness modulates neural responses in action-related areas, while word imageability modulates activation in object processing areas. Second, we provide novel results showing that activation negatively correlated with word frequency in the left fusiform gyrus was specific for visually related words, while in the left middle temporal gyrus word frequency effects emerged only for action-related words. Following the dominant view in the literature that effects of word frequency mainly reflect access to lexico-semantic information, we suggest that category-specific brain activation reflects distributed neuronal ensembles, which ground language and concepts in perception-action systems of the human brain. Our approach can be applied to any event-related data using single-stimulus presentation, and allows a detailed characterization of the functional role of category-specific activation patterns

    Bend it like Beckham: embodying the motor skills of famous athletes.

    Get PDF
    Observing an action activates the same representations as does the actual performance of the action. Here we show for the first time that the action system can also be activated in the complete absence of action perception. When the participants had to identify the faces of famous athletes, the responses were influenced by their similarity to the motor skills of the athletes. Thus, the motor skills of the viewed athletes were retrieved automatically during person identification and had a direct influence on the action system of the observer. However, our results also indicated that motor behaviours that are implicit characteristics of other people are represented differently from when actions are directly observed. That is, unlike the facilitatory effects reported when actions were seen, the embodiment of the motor behaviour that is not concurrently perceived gave rise to contrast effects where responses similar to the behaviour of the athletes were inhibited

    Language Comprehension in the Balance: The Robustness of the Action-Compatibility Effect (ACE)

    Get PDF
    How does language comprehension interact with motor activity? We investigated the conditions under which comprehending an action sentence affects people's balance. We performed two experiments to assess whether sentences describing forward or backward movement modulate the lateral movements made by subjects who made sensibility judgments about the sentences. In one experiment subjects were standing on a balance board and in the other they were seated on a balance board that was mounted on a chair. This allowed us to investigate whether the action compatibility effect (ACE) is robust and persists in the face of salient incompatibilities between sentence content and subject movement. Growth-curve analysis of the movement trajectories produced by the subjects in response to the sentences suggests that the ACE is indeed robust. Sentence content influenced movement trajectory despite salient inconsistencies between implied and actual movement. These results are interpreted in the context of the current discussion of embodied, or grounded, language comprehension and meaning representation

    Cognitive demands of face monitoring: Evidence for visuospatial overload

    Get PDF
    Young children perform difficult communication tasks better face to face than when they cannot see one another (e.g., Doherty-Sneddon & Kent, 1996). However, in recent studies, it was found that children aged 6 and 10 years, describing abstract shapes, showed evidence of face-to-face interference rather than facilitation. For some communication tasks, access to visual signals (such as facial expression and eye gaze) may hinder rather than help children’s communication. In new research we have pursued this interference effect. Five studies are described with adults and 10- and 6-year-old participants. It was found that looking at a face interfered with children’s abilities to listen to descriptions of abstract shapes. Children also performed visuospatial memory tasks worse when they looked at someone’s face prior to responding than when they looked at a visuospatial pattern or at the floor. It was concluded that performance on certain tasks was hindered by monitoring another person’s face. It is suggested that processing of visual communication signals shares certain processing resources with the processing of other visuospatial information

    fMRI evidence of ‘mirror’ responses to geometric shapes

    Get PDF
    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control

    Grip Force Reveals the Context Sensitivity of Language-Induced Motor Activity during “Action Words

    Get PDF
    Studies demonstrating the involvement of motor brain structures in language processing typically focus on \ud time windows beyond the latencies of lexical-semantic access. Consequently, such studies remain inconclusive regarding whether motor brain structures are recruited directly in language processing or through post-linguistic conceptual imagery. In the present study, we introduce a grip-force sensor that allows online measurements of language-induced motor activity during sentence listening. We use this tool to investigate whether language-induced motor activity remains constant or is modulated in negative, as opposed to affirmative, linguistic contexts. Our findings demonstrate that this simple experimental paradigm can be used to study the online crosstalk between language and the motor systems in an ecological and economical manner. Our data further confirm that the motor brain structures that can be called upon during action word processing are not mandatorily involved; the crosstalk is asymmetrically\ud governed by the linguistic context and not vice versa

    Designing 'Embodied' Science Learning Experiences for Young Children

    Get PDF
    Research in embodied cognition emphasises the importance of meaningful ‘bodily’ experience, or congruent action, in learning and development. This highlights the need for evidence-based design guidelines for sensorimotor interactions that meaningfully exploit action-based experiences, that are instrumental in shaping the way we conceptualise the world. These sensorimotor experiences are particularly important for young children as they can provide them with an embodied toolkit of resources (independent of language skills or subject specific vocabulary) that they can draw upon to support science ‘think’ and ‘talk’, using their own bodies to develop and express ideas through gesture, that are grounded on sensorimotoric representations from action experiences. Taking an iterative design-based research (DBR) approach, this paper reports the design, development and deployment of a programme of outdoor activities for children aged 4–6 years, that drew on embodied cognition theory to foster meaningful action in relation to ideas of air resistance. This research is relevant to researchers, practitioners and designers. It makes a contribution to learning experience design by making explicit the process of applying key components of embodied cognition theory to the design of science learning activities for early years, and how this can effectively inform digital design

    An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks

    Get PDF
    Cognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ameliorated by changes in long-term memory associated with learning. Initially, cognitive load theory's view of human cognitive architecture was assumed to apply to all categories of information. Based on Geary's (Educational Psychologist 43, 179-195 2008; 2011) evolutionary account of educational psychology, this interpretation of human cognitive architecture requires amendment. Working memory limitations may be critical only when acquiring novel information based on culturally important knowledge that we have not specifically evolved to acquire. Cultural knowledge is known as biologically secondary information. Working memory limitations may have reduced significance when acquiring novel
    • 

    corecore